Interplay between KLF4 and ZEB2/SIP1 in the regulation of E-cadherin expression.

نویسندگان

  • Benjamin Koopmansch
  • Geert Berx
  • Jean-Michel Foidart
  • Christine Gilles
  • Rosita Winkler
چکیده

E-cadherin expression is repressed by ZEB2/SIP1 while it is induced by KLF4. Independent data from the literature indicate that these two transcription factors could bind close to each other in the proximal region of the E-cadherin gene promoter. We have here explored a potential competition between ZEB2 and KLF4 for the binding to the E-cadherin promoter. We show an inverse correlation between ZEB2 expression levels and KLF4 recruitment on the E-cadherin promoter in three breast cancer cell lines and in A431/HA.ZEB2 cells in which ZEB2 expression is induced by doxycycline (DOX). We identified a region of the E-cadherin promoter bound by KLF4 which is necessary for the activation of the E-cadherin promoter activity after KLF4 overexpression. This region is localized between positions -28 and -10 and thus overlaps with one of the ZEB2 binding sites. Deleting the bipartite ZEB2 binding site results in increased KLF4 induced E-cadherin promoter activity. Taken together, our results suggest that E-cadherin expression in cancer cells is controlled by a balance between ZEB2 and KLF4 expression levels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell–cell junctions

SIP1/ZEB2 is a member of the deltaEF-1 family of two-handed zinc finger nuclear factors. The expression of these transcription factors is associated with epithelial mesenchymal transitions (EMT) during development. SIP1 is also expressed in some breast cancer cell lines and was detected in intestinal gastric carcinomas, where its expression is inversely correlated with that of E-cadherin. Here,...

متن کامل

Pancreatic cancers epigenetically silence SIP1 and hypomethylate and overexpress miR-200a/200b in association with elevated circulating miR-200a and miR-200b levels.

Aberrant DNA methylation and microRNA expression play important roles in the pathogenesis of pancreatic cancer. While interrogating differentially methylated CpG islands in pancreatic cancer, we identified two members of miR-200 family, miR-200a and miR-200b, that were hypomethylated and overexpressed in pancreatic cancer. We also identified prevalent hypermethylation and silencing of one of th...

متن کامل

The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2.

Cancer progression has similarities with the process of epithelial-to-mesenchymal transition (EMT) found during embryonic development, during which cells down-regulate E-cadherin and up-regulate Vimentin expression. By evaluating the expression of 207 microRNAs (miRNAs) in the 60 cell lines of the drug screening panel maintained by the Nation Cancer Institute, we identified the miR-200 miRNA fa...

متن کامل

Transcriptional regulation of E-cadherin and oncoprotein E7 by valproic acid in HPV positive cell lines

Objective(s): Valproic acid (VPA) has proven to be as one of the most promising useful drug with anticancer properties.In this study, we investigate the VPA effects on E-cadherin expression in HeLa, TC1, MKN45, and HCT116 cell lines.  This study assesses the effects of VPA on human papillomavirus E7 expression in HPV positive cell lines. Materials and Methods: Cell lines were treated by2 mmol/...

متن کامل

Taki 9_8

Epithelial-mesenchymal transition (EMT) is a crucial event in cancer progression. We previously reported that EMT up-regulates matrix metalloproteinase-2 (MMP-2) expression in squamous cell carcinoma (SCC) cells. In this study, we showed that Tet Off-induced expression of Snail or SIP1, and treatment with TGF-ß1 induced EMT in terms of down-regulation of E-cadherin, and up-regulation of vimenti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical and biophysical research communications

دوره 431 4  شماره 

صفحات  -

تاریخ انتشار 2013